CHERI Performance Enhancement for a Bytecode
Interpreter

Duncan Lowther
University of Glasgow
Glasgow, United Kingdom
duncan.lowther@glasgow.ac.uk

Abstract

During our port of the MicroPython bytecode interpreter
to the CHERI-based Arm Morello platform, we encountered
a number of serious performance degradations. This paper
explores several of these performance issues in detail, in each
case we characterize the cause of the problem, the fix, and
the corresponding interpreter performance improvement
over a set of standard Python benchmarks.

While we recognize that Morello is a prototypical phys-
ical instantiation of the CHERI concept, we show that it is
possible to eliminate certain kinds of software-induced run-
time overhead that occur due to the larger size of CHERI
capabilities (128 bits) relative to native pointers (generally
64 bits). In our case, we reduce a geometric mean benchmark
slowdown from 5x (before optimization) to 1.7x (after op-
timization) relative to AArché4, non-capability, execution.
The worst-case slowdowns are greatly improved, from 100x
(before optimization) to 2x (after optimization).

The key insight is that implicit pointer size presupposi-
tions pervade systems code; whereas previous CHERI port-
ing projects highlighted compile-time and execution-time
errors exposed by pointer size assumptions, we instead focus
on the performance implications of such assumptions.

CCS Concepts: » Software and its engineering — Inter-
preters; Software performance; « Security and privacy
— Virtualization and security.

Keywords: Capabilities, Morello, Python, software imple-
mentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL °23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0401-7/23/10...$15.00
https://doi.org/10.1145/3623507.3623552

Dejice Jacob
University of Glasgow
Glasgow, United Kingdom
dejice.jacob@glasgow.ac.uk

Jeremy Singer
University of Glasgow
Glasgow, United Kingdom
jeremy.singer@glasgow.ac.uk

ACM Reference Format:

Duncan Lowther, Dejice Jacob, and Jeremy Singer. 2023. CHERI
Performance Enhancement for a Bytecode Interpreter. In Proceed-
ings of the 15th ACM SIGPLAN International Workshop on Vir-
tual Machines and Intermediate Languages (VMIL °23), October 23,
2023, Cascais, Portugal. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3623507.3623552

1 Introduction

The CHERI concept of microarchitectural capabilities in-
volves processor support for fat pointers and hardware checks
on memory accesses. This radical, perhaps invasive, approach
to improve dynamic memory safety is massively challeng-
ing for programming language runtimes. In previous work
[8, 10], we described our strategy for adapting the MicroPy-
thon runtime to run on a CHERI platform. In this earlier
work, we tackled two key families of bugs:

1. CHERI-induced compiler errors, caused by pointer size
assumptions in the code base, or legacy C style pointer
abuse; and,

2. CHERI-induced runtime errors, due to capability vi-
olations in memory accesses—either out-of-bounds
accesses or invalid capabilities.

Fixing these classes of bugs enabled us to get MicroPython
up-and-running on CHERI; however the initial performance
is poor. There appear to be significant runtime overheads
and inefficiencies associated with CHERI.

In this work, we look at a further crucial stage in porting
existing virtual machines to CHERL: i.e. performance opti-
mization. Suppose we can get something running on a CHERI
platform, how do we ensure it runs at an acceptable speed?

This paper starts with a working, but highly inefficient,
port of MicroPython to CHERTI; this version has a geometric
mean slowdown of 5x (relative to equivalent non-CHERI ex-
ecution) for a set of standard Python benchmarks. We follow
a performance debugging strategy to identify and eliminate
runtime overheads, noting these are mainly associated with
dynamic memory management. After three rounds of soft-
ware performance optimization, our CHERI MicroPython
has a geometric mean slowdown of 1.7x (relative to non-
CHERI). We expect there are further performance gains to
be made, but this work clearly demonstrates that careful
performance profiling and debugging is essential if CHERI
is to be adopted by the language runtime community.

https://orcid.org/0009-0004-9310-8092
https://orcid.org/0000-0002-4137-0353
https://orcid.org/0000-0001-9462-6802
https://doi.org/10.1145/3623507.3623552
https://doi.org/10.1145/3623507.3623552
https://doi.org/10.1145/3623507.3623552

VMIL °23, October 23, 2023, Cascais, Portugal

2 Background
2.1 CHERI and Morello

A Capability Hardware Enhanced RISC Instructions (CHERI)
system [15, 17] is a collection of instruction set extensions
and processor logic for modern micro-architectures, provid-
ing direct support for embedding metadata into ‘fat’ pointers
to enable runtime checks on the use of these values (which
are known as capabilities). Key properties enforced by CHERI
include the following:

1. Capabilities cannot be forged and have to be derived
from an existing capability enforced by a validity tag
(so, no casting from int to void *).

2. Capability spatial bounds are tightly enforced, and
bounds cannot be ‘grown’, only monotonically reduced.

3. Capabilities have permissions, similar to page-table
permissions (r/w/x) but they enable fine-grained con-
trol — effectively capabilities provide per-pointer per-
missions.

The CHERI concept has been instantiated by Arm in the
Morello prototype architecture [1]. Morello is a quad-core 64-
bit Arm processor (ISA v8.2-A) based on the commercially
available Neoverse N1 system. While we recognize there
may be minor performance anomalies and inconsistencies in
this prototype implementation [12], it is a fully-functional
platform and can provide useful performance forecasts for
CHERI adopters. Whereas in conventional AArch64 proces-
sors, a pointer is simply a 64-bit machine word, on Morello
an architectural capability is a 128-bit value that includes
an address, bounds, and associated metadata [16]. Further,
the validity ‘tag’ bit is stored out-of-band and cannot be
manipulated directly by user code.

2.2 CHERI Porting

A great deal of open-source software has been ported to
CHERI and Morello [3, 11]. In particular, the FreeBSD OS has
a port named CheriBSD. Many user-space applications have
been adapted for CHERI, often with minimal source code
changes. A port of the KDE desktop framework reportedly
incurred only 0.026% lines of altered code [14].

However, systems level code is more likely to feature
pointer-intensive operations and unusual interactions with
memory. These are the areas where adaptation for CHERI is
more complicated. One study of CHERI memory allocators
[2] reveals that, for some real-world C library malloc imple-
mentations, up to 10% of the code base requires modification.
Further, performance of memory allocators on Morello is
inconsistent and the performance profiling tools are not suf-
ficiently mature to diagnose the root causes of problems.

There are a few VM ports to CHERI at least partially under-
way. Of these, the most complete appears to be a JavaScript-
Core port [7]. However so far, no meaningful performance
results are publicly available for this or any other VM on
Morello.

Duncan Lowther, Dejice Jacob, and Jeremy Singer

2.3 MicroPython

MicroPython [4] is a small-scale Python interpreter, largely
written in C, explicitly targeting microcontroller scale de-
vices. It is a straightforward bytecode interpreter with a fixed
size heap, implementing a non-moving mark/sweep garbage
collector. MicroPython features a set of libraries, some of
which are specific for the embedded systems domain, oth-
ers are general purpose. The interpreter can be compiled
and executed as a standalone, user-space process VM on a
POSIX host environment. We have adapted MicroPython
for CHER], based on this process VM model, running on
CheriBSD. A work-in-progress report describes our initial
work [10] and a follow-on paper describes the complete port
[8]. Since then, we have been looking at performance opti-
mization, particularly focusing on high-overhead memory
management aspects of the VM.

MicroPython comes with a set of benchmarks, some of
which are intended for performance measurements. These
are based in part on the Programming Language Shootout
benchmarks [9], which are familiar to VM developers across
multiple languages. In our performance optimization work,
as in other assessments of CHERI performance, we compare
AArch64 code running on Morello (known as hybrid mode)
with capability-enhanced code running on the same plat-
form (known as purecap mode). We measure and report the
performance of the purecap code for each benchmark, rela-
tive to the equivalent execution of hybrid code. In our case,
these are identical bytecode benchmarks running on distinct
MicroPython interpreter instances (an AArch64 executable
versus a CHERI executable).

Subsequent sections in this paper explore the software
performance optimizations we applied for MicroPython on
the Morello platform.

3 Heap Block Size

When we first evaluated the performance of our purecap
build of the MicroPython interpreter, we saw highly concern-
ing runtime overheads on four of the benchmarks Figure 1.
On two of the benchmarks, the purecap execution time ex-
ceeded 100x that of the hybrid version (fannkuch at 135.7
and nqueens at 100.0); two more had overheads above 10x
(pystone at 21.3 and pydigits at 15.2).

We began by tackling the 100x overheads. One thing that
fannkuch and nqueens had in common was repetitive list-
slicing operations, and a further list-slicing microbenchmark
confirmed that the overhead was caused by those operations.
It is also useful to note that the normalised instruction-retired
counts were elevated at similar levels to the normalised exe-
cution time.

To build a more detailed execution profile, the pmcstat
utility (a FreeBSD profiling tool) was used to sample the
callchain of the fannkuch benchmark at every 65536 instruc-
tions retired. The current version of pmcstat on CheriBSD

CHERI Performance Enhancement for a Bytecode Interpreter

VMIL ’23, October 23, 2023, Cascais, Portugal

=
b3

10!

Normalised (vs hybrid) purecap micropython metrics

10°

aes-256 chaos fannkuch float

hexiom

1 |..“||._|.-|. .“ “ “ L1

mmm normalised Total Time
normalised RSS
B normalised Instructions retired

normalised L1-l-cache
normalised L1-D-cache
B normalised L2-D-cache

mandelbrot nqueens pidigits pystone raytrace

Figure 1. Performance of Python benchmarks running on the purecap interpreter, normalised to the hybrid interpreter
performance. For example, the wall-clock execution time total-time of chaos on purecap is 2.0x greater than on hybrid. To
understand why purecap is slower than we expected, we recorded several performance metrics: RSS is maximum memory
utilisation; INST_RETIRED the number of instructions retired while executing the benchmark; and {L1-I, L1-D, L2-D} CACHE
the L1 instruction, L1 data, and L2 data, cache misses respectively. The normalised y—axis is on a logarithmic scale.

0

200

Thousands
3,
ul
(=]

[y
=}
=}

50

0x160108
0x160118
0x160128
0x160138
0x160148
0x160158
0x160168
0x160178 ‘
0x160188
0x160198 |
0x1601a8 |
0x1601b8
Ox1601c8
0x1601d8
0Ox1601e8
0x1601f8
0x160208
0x160218
0x160228
0x160238
0x160248
0x160258
0x160268
0x160278 |
0x160288
0x160298
0x1602a8
0x1602b8

0x1602¢8 '

0x1602d8 |

PC samples in gc_alloc()

0x160418 |
0x160428
0x160438
0x160448
0x160458
0x160468
0x160478
0x160488

0x1602e8 |
ox1602f8 |
0x160308 |
0x160318
0x160328 |
0x160338
0x160348
0x160358
0x160368 |
0x160378
0x160388 |
0x160398
0x1603a8 |
0x1603b8
0x1603c8
0x1603d8 |
0x1603e8
0x1603f8
0x160408
0x160498 |

Figure 2. Histogram of sampled PC values from gc_alloc()

had issues resolving the symbols of the purecap binary By
creating a simple program to read the pmcstat dump, print
out raw memory addresses and performing a manual lookup,
we concluded that 99.3% (1820989/1833685) of the samples
occured in the gc_alloc() function in the top stack frame.
The gc_alloc() function is an API-level entry point of the
heap allocator in MicroPython.

Figure 2 is a histogram of the sampled PC values within the
gc_alloc() function. The samples are very clearly concen-
trated in the interval between 0x1602d@ and 0x160338. By

debugging (using gdb) and mapping these addresses to sym-
bols in the MicroPython binary pointed to a for-loop in the
allocator, used to search for a contiguous run of free blocks
of the appropriate length. From this, we conjectured that the
issue was due to increased memory fragmentation, likely
caused by the width of a CHERI capability being double the
width of a AArché64 pointer

MicroPython’s in-built GC statistics functionality shows
a large number of 1-block allocations when executing the
interpreter compiled in hybrid mode. There were no statis-
tically significant 1-block allocations during execution of

VMIL °23, October 23, 2023, Cascais, Portugal

4.0

Duncan Lowther, Dejice Jacob, and Jeremy Singer

B normalised Total Time normalised L1-I-cache
normalised RSS normalised L1-D-cache

357 mmm normalised Instructions retired mmm normalised L2-D-cache
4
°
E 3o
c
=}
k]
s
3
g2s
£
o
g B
2
£20
2
: | 11
5
Z15 B m
w
=
o
2
210+
T
E
(=}
z

0.5

0.0

aes-256 chaos fannkuch fft float

hexiom mandebrot

nqueens pidigits pystone raytrace

Figure 3. Performance of Python benchmarks running on the purecap interpreter with increased block size, normalised to

the hybrid interpreter performance.

the purecap interpreter. MicroPython’s default blocksize is
4*sizeof (mp_uint_t), i.e. four times the platform word
size. As both hybrid and purecap use 64-bit integers, they
used the same block size, despite purecap objects being larger
due to the 128-bit size of capabilities. Changing the block
size to 4xsizeof (mp_obj_t) (i.e., scaling based on pointer
size rather than integer size) restored the expected frequency
of 1-block allocations and fixed the overhead issue, as shown
in Figure 3.

The frequency of 1-block allocations is important, because
MicroPython’s allocator only advances its ‘last-free index’
(the point at which a new call to gc_alloc() begins search-
ing for free blocks) when a 1-block allocation is made. This
guarantees that there are no free blocks in the ‘skipped’ re-
gion, but also means that the index lags significantly behind
the actual first free block when most allocations are two
or more blocks long. A more sophisticated allocator could
update the index more often, but this paper focuses on the
removal of purecap-introduced overhead and such changes,
being shared with the reference implementation, would be
out of scope.

4 Stack Frame Size

After changing the block-size to a multiple of capability-
width, the purecap version displayed a execution time, rel-
ative to the hybrid version, of 1.5 to 2.1 times on all bench-
marks except pystone. Pystone executed by the purecap
interpreter showed a normalised slowdown of around 3.7x.
We thus turned our attention to diagnosing the performance
issues in this particular benchmark. The custom program that
was used to read pmcstat dumps to look up addresses in this
table was augmented with the symbol-table extracted from
the binary. This is done using the 11vm-objdump-morello

tool. We also modified it to output the samples in a format
readable by Brendan Gregg’s[5, 6] Flame Graph scripts. A
flame graph shows aggregated stack traces over the full ex-
ecution of a program, so the width of each function bar on
the graph indicates the amount of time spent executing that
function. Figures 4 and 5 show the flame graphs of the ex-
ecution of the pystone benchmark, sampled every 65536
instructions.

From these graphs, it was clear that gc_alloc() was again
a significant source of overhead. The gc_alloc() allocator
function accounted for approximately a quarter of the overall
instruction count on the purecap version while being statis-
tically insignificant for the hybrid execution run. Looking
at the program counter samples within gc_alloc() again
showed a concentration in the search-for-free-blocks loop.
Instrumenting the allocator showed that this loop ran over
200 times as many iterations on the purecap version as the
hybrid version. Further, there were thousands of 3- and 4-
block allocation calls on the purecap version that did not
occur on the hybrid version. Unlike in Section 3, where a
similar symptom was due to the purecap allocations taking
up more blocks than their hybrid equivalents, in this case,
these were in addition to a comparable number of 1- and
2-block allocations.

Referring back to Figure 5 we see that the most expensive
gc_alloc() calls are coming from fun_bc_call() (through
the wrapper m_malloc_maybe()). Tracing these calls, we
found that they occured when allocating space for the call
frame of a Python function. The interpreter places smaller
stack frames on the C stack and larger stack frames in the
heap and is controlled by the configurable compile-time con-
stant value VM_MAX_STATE_ON_STACK. This constant, like the
block size, is calculated based on the integer word size — a

CHERI Performance Enhancement for a Bytecode Interpreter VMIL ’23, October 23, 2023, Cascais, Portugal

L]

| |
‘mp_sxecute_bytecode |
fmbccal n
mp_gall_function_n kw n
‘mp_execute bytecode)]]
fumbceall
‘mp_all_funetion 0 mpoparse
‘exeaute from_lexer
main_
main
—start
Figure 4. Flame graph (in terms of instructions retired) for hybrid version of MicroPython interpreter running pystone
benchmark.

||i
!

SEE==

[

Figure 5. Flame graph (in terms of instructions retired) for purecap version of MicroPython interpreter running pystone
benchmark—notice the large gc_alloc horizontal bar.

VMIL °23, October 23, 2023, Cascais, Portugal

frame of up to 16 words will be allocated on the stack. On
purecap, frames are generally twice as large as hybrid, and so
were being heap-allocated more frequently. 16 words occupy
128 bytes on a 64-bit system, or 2 ‘new’ heap blocks on pure-
cap. Frames that would, on hybrid, fit within this limit may
be up to 256 bytes on purecap, or 4 ‘new’ heap blocks. Thus,
the frames spilled because of the change to purecap were all
3 or 4 blocks long, resulting in the anomalous increase in
allocation calls noted earlier.

We introduced a change, to redefine the compile-time con-
stant VM_MAX_STATE_ON_STACK based on the size of a pointer
rather than the size of an integer. This ensures that call stacks
are not spilled where they would be stack-allocated in the
reference implementation. Following this adjustment, the
purecap interpreter displayed a significant performance im-
provement, as shown in Figure 6. The normalised execution
time on the pystone benchmark dropped from 3.7 to 2.8,
with all other benchmarks under 2.0. The new flame graph
(Figure 7) shows that gc_alloc() is no longer a significant
overhead.

5 Compilation Inefficiency

Following the fixes in the previous two sections, the perfor-
mance on the pystone benchmark, while much improved,
was still noticably worse than the other benchmarks. As can
be seen in Figure 6, while normalised instructions-retired no
longer tightly tracks normalised execution time, it is still (at
1.8) a significant contributor to the overhead. We thus once
more examine why so many more instructions are being
executed by the purecap version.

As the individual flame graphs in Figures 4 and 7 are now
similar enough to be difficult to distinguish by eye, Figure 8
shows the differential flame graph, where the difference in
sample counts within a given function is indicated by the
colour of that function’s box. Red indicates an overhead
(purecap > hybrid) while blue indicates a saving (purecap <
hybrid); the saturation in either case indicates the magnitude
of the difference.

From this graph we can see that the main remaining over-
head (in instructions retired, at least) is localised in the func-
tion mp_execute_bytecode(). This is the function that im-
plements the MicroPython VM, interpreting the MPY byte-
code for a given function by means of a computed-goto state-
ment utilising a branch table, with each branch handling
a particular bytecode instruction and then (unless execu-
tion halts due to a return or exception) performing another
computed-goto to process the next instruction.

This is functionally a very tight loop — the DISPATCH se-
quence (saving the instruction pointer for exception-handling
purposes and then performing the computed-goto) takes
seven machine instructions (as shown in Listing 1). For the
simpler bytecode instructions, the actual execution only

Duncan Lowther, Dejice Jacob, and Jeremy Singer

1, x23/c21 instruction pointer (ip).
> ; x25/c27 pointer to code_state struct
3 ; [...,#0]: ip value before fetching the
4 current bytecode instruction
5 ; x26/c28

pointer to branch table
6 str x23, [x25] str c21,[c27,#0]
7 1drb w8, [x23] ldrb w8, [c21]
s add x9, x23, #1 add cl, c21, #1
9 mov x28, x23 mov c20, c21
10 mov x23, x9 mov c21, cl
11 1ldr x8, \ ldr co, \
12 [x26,x8,1sl #3] [c28,x8,1sl #4]
13 br x8 br co

Listing 1. A64 (left) and Cé64 (right) disassembly for the
DISPATCH sequence.

takes one to four machine instructions, for a total of eight to
eleven machine instructions per bytecode instruction.

While the DISPATCH sequence is compiled to the same
number of machine instructions on both hybrid and purecap
builds (seven), the same is not true for the other statements
in the loop: there are several places where the purecap build
uses more machine instructions to execute a given byte-
code instruction than the hybrid build. As several of the
bytecode instructions with a high ratio of capability instruc-
tions (known as C64) to generic Arm instructions (known as
A64) were used far more frequently in pystone than other
benchmarks, we conjectured that this was the cause of the
overhead we saw.

While some of these extra machine instructions are un-
avoidable (for example, ‘tagging’ the low bits of a hybrid
pointer requires a single ORR instruction while the same op-
eration on a capability requires ORR followed by SCVALUE),
a significant number of these are due to what appear to be
odd choices by the compiler code generator. Listing 2 shows
some of the more obvious cases of inefficiency. In the first
two cases, the compiler generates extra instructions seem-
ingly to ensure the upper bits of the capability are cleared.
However, since writing to the 32- or 64-bit view of a capa-
bility register is defined to clear the capability metadata and
tag,[1] these ‘cast’ instructions are unnecessary. The third
case takes this even further, with the compiler generating
a ‘cast’ of the constant to a capability before performing an
X-register (i.e. non-capability) compare. In the fourth case,
extra instructions are used to derive a new capability with
a bit-masked value when the bit mask was only needed to
test whether a particular bit was set. The final case involves
breaking LDP/STP instructions into pairs of single-register
loads and stores. This notably did not happen everywhere:
in many places the purecap binary did contain LDP/STP in-
structions.

While these inefficiencies may seem insignificant at first
glance, in a ‘hot’ loop of often fewer than 20 instructions
in length they quickly add up. Unfortunately, these issues

CHERI Performance Enhancement for a Bytecode Interpreter VMIL ’23, October 23, 2023, Cascais, Portugal

3.0

T T T T
mmm normalised Total Time 59 normalised L1-I-cache
normalised RSS normalised L1-D-cache
mmm normalised Instructions retired @M normalised L2-D-cache

N
I

~
o

Normalised (vs hybrid) purecap micropython metrics
- -
o n

i |
[TRIRTREA R TR R LR
[ARLARISRIARIAMI RN RTINS

o
o

aes-256 chaos fannkuch fft float hexiom mandebrot nqueens pidigits pystone raytrace

Figure 6. Performance of Python benchmarks running on the purecap interpreter with increased block size and maximum
VM state size, normalised to the hybrid interpreter performance.

Figure 7. Flame Graph (instructions retired) of purecap interpreter (after VM_MAX_STATE_ON_STACK adjustment) running
pystone benchmark.

cannot be cleanly fixed in the MicroPython source but rather
require changes to the C compiler. In order to determine the
actual impact of these inefficiencies (and as a change to the
C compiler was out of scope for the project), we patched the
binary by hand to fix several of these inefficiencies, saving a

total of 19 machine instructions across the various branches.

The normalised performance of the purecap build after this
patch is shown in Figure 9. The normalised execution time
of pystone has fallen from 2.8 to 1.9, and the normalised
instructions-retired count has fallen to a similar range as
the other benchmarks. It should be stressed that we have

VMIL °23, October 23, 2023, Cascais, Portugal

fu..

Duncan Lowther, Dejice Jacob, and Jeremy Singer

gc_a..
m.. m_..
mp_map_re..
mp_map_lookup
mp_obj_instan..
mp_store_attr
mp_execute_byt..
fun_bc_call
mp_call_method_n_kw
mp_obj_instance_make_new
type_call

mp.. mp_call_function_n_kw
mp_execute_byt.. mp_execute_bytecode
fun_bc_call fun_bc_call gs..
mp_call_function_n_kw mp_call_method_n_kw mp.. mp_o..

fun_bc_call
mp_call_function_n_kw

mp_execute_bytecode
fun_bc_call
mp_call_function_n_kw
mp_execute_bytecode
fun_bc_call
mp_call_function_n_kw
closure_call
mp_call_function_n_kw
mp_execute_bytecode
fun_bc_call
mp_call_function_n_kw
mp_execute_bytecode
fun_bc_call
mp_call_function_0
execute_from_lexer
main_

main
_start

all

mp_..

mp_parse

Figure 8. Differential Flame Graph (instructions retired) of purecap interpreter (after VM_MAX_STATE_ON_STACK adjustment)

running pystone benchmark, relative to hybrid.

by no means eliminated all of the compiler-introduced in-
efficiencies, and as the 11vm-morello toolchain and other
CHERI-aware compilers improve, we are likely to see signif-
icantly better performance from purecap software.

6 Conclusion

When porting systems software to Morello or other CHERI
platforms, the focus is often on the correctness of the port.
The issues identified in Sections 3 and 4 show that this is not
sufficient: where parameters have been tuned in the original
code based on an expectation of equal integer and pointer
size, a CHERI port which does not adjust these parameters ac-
cordingly may exhibit unacceptable performance overheads
despite being functionally correct.

After implementing the performance fixes described in
this paper, all of our benchmarks showed between 1.4x and
2.0x execution time overhead on purecap, while overheads
in terms of instructions retired ranged between 6.6% and
32% (Table 1). The results in Section 5 suggest that a signifi-
cant amount of this overhead is due to inefficiencies in the
compiler. The performance results here are also likely to be
further mitigated as the new hardware is released that is
better tuned for CHERI operations than the current Morello

[13].

Table 1. Performance overheads on purecap relative to hy-
brid by metric. Shown are the benchmark with the lowest
overhead, the benchmark with the highest overhead, and the
geometric mean across all the benchmarks.

Metric Best Worst Geometric mean
CPU cycles 45.4% 87.0% 64.8%
Instructions retired 6.6% 32.1% 16.4%
Cycles/instruction 17.8% 71.4% 41.7%
L1-D-cache 37.5% 57.3% 46.3%
L1-I-cache -43% 25.7% 8.0%
L2-D-cache 32.6% 76.1% 46.4%
Total time 46.3% 99.6% 73.1%
Acknowledgments

This work was funded by the Digital Security by Design
(DSbD) programme delivered by UKRI (including grants
EP/V000349/1 and EP/X015831/1), also by the UK Defence
and Security Accelerator contract ACC6037520.

References

[1] Arm.2021. Arm Architecture Reference Manual Supplement — Morello
for A-profile Architecture. https://developer.arm.com/documentation/
ddi0606/.

https://developer.arm.com/documentation/ddi0606/
https://developer.arm.com/documentation/ddi0606/

CHERI Performance Enhancement for a Bytecode Interpreter

Figure 9.

Normalised (vs hybrid) purecap micropython metrics

o
n

VMIL ’23, October 23, 2023, Cascais, Portugal

N
o

~
o

=
o

=
o

0.0-

aes-256 chaos fannkuch fft float

AR

hexiom

normalised L1-D-cache
B normalised L2-D-cache

B normalised Total Time
B normalised Instructions retired
normalised L1-l-cache

mandelbrot nqueens pidigits pystone raytrace

Performance of Python benchmarks running on the purecap interpreter with increased block size and maximum VM

state size and a patched binary eliminating certain compiler inefficiencies, normalised to the hybrid interpreter performance.

1
2
3

(SIS

26

; Loading a constant uintptr_t

; (9 occurrences using ADD, 1 using SUB)
mov X0, xzr

mov w8, #14 add co, co, #14

; Casting an integer to a uintptr_t

; (4 occurrences)
mov X0, xzr

<N/A> add c0, co, x8, uxtx

; Comparing a uintptr_t
; (3 occurrences)

against a constant

mov x@, xzr
add co@, co, #6
cmp x22, #6 cmp x24, x©

; Testing a low-bits
; (2 occurrences)

"tag" on a pointer

and x8, x0, #0x2
scvalue c@, c@, x8
tbz w8, #1, cbz x0,

; Load/store pairs of registers

; (4 occurrences using LDP, 2 using STP)
ldur co,

ldr c1,

ldp x0, x1,

Listing 2. A64 (left) and C64 (right) disassembly of selected
areas highlighting compiler inefficiency. Occurrence counts
ignore the particular registers and values used.

[2] Jacob Bramley, Dejice Jacob, Andrei Lascu, Jeremy Singer, and Lau-

rence Tratt. 2023. Picking a CHERI Allocator: Security and Perfor-
mance Considerations. In Proceedings of the 2023 ACM SIGPLAN In-

ternational Symposium on Memory Management. 111-123. https:
//doi.org/10.1145/3591195.3595278

(3]

[7

—

8

[

[10]

(11]

Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo
Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. Cheri-
ABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-Time Environment. In Proceedings
of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 379-393.
https://doi.org/10.1145/3297858.3304042

Damien P. George. 2013. MicroPython. https://micropython.org.
Brendan Gregg. 2016. The Flame Graph. Commun. ACM 59, 6 (may
2016), 48-57. https://doi.org/10.1145/2909476

Brendan Gregg. 2016. The Flame Graph: This Visualization of Software
Execution is a New Necessity for Performance Profiling and Debug-
ging. Queue 14, 2 (mar 2016), 91-110. https://doi.org/10.1145/2927299.
2927301

Brett Gutstein. 2022. Memory safety with CHERI capabilities: security
analysis, language interpreters, and heap temporal safety. Technical
Report UCAM-CL-TR-975. University of Cambridge, Computer Labo-
ratory. https://doi.org/10.48456/tr-975

Duncan Lowther, Dejice Jacob, and Jeremy Singer. 2023. Morello
MicroPython: A Python Interpreter for CHERI. In Proceedings of the
20th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes. https://doi.org/10.1145/3617651.3622991
Stefan Marr, Benoit Daloze, and Hanspeter Mossenbock. 2016. Cross-
Language Compiler Benchmarking: Are We Fast Yet?. In Proceedings
of the 12th Symposium on Dynamic Languages. 120-131. https://doi.
org/10.1145/2989225.2989232

Jeremy Singer. 2023. Towards Secure MicroPython on Morello (WIP).
In Proceedings of the 24th ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for Embedded Systems. 134-137.
https://doi.org/10.1145/3589610.3596272

Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, et al. 2015. CHERI: A hybrid capability-
system architecture for scalable software compartmentalization. In
IEEE Symposium on Security and Privacy. 20-37.

https://doi.org/10.1145/3591195.3595278
https://doi.org/10.1145/3591195.3595278
https://doi.org/10.1145/3297858.3304042
https://micropython.org
https://doi.org/10.1145/2909476
https://doi.org/10.1145/2927299.2927301
https://doi.org/10.1145/2927299.2927301
https://doi.org/10.48456/tr-975
https://doi.org/10.1145/3617651.3622991
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/3589610.3596272

VMIL °23, October 23, 2023, Cascais, Portugal

(12]

(13]

(14]

(15]

Robert N. M. Watson, Graeme Barnes, Jessica Clarke, Richard Grisen-
thwaite, Peter Sewell, Simon W. Moore, and Jonathan Woodruff. 2023.
Arm Morello Programme: Architectural security goals and known limita-
tions. Technical Report UCAM-CL-TR-982. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-982

Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes, Richard Grisenthwaite, Kathryn
Stacer, Silviu Baranga, and Alexander Richardson. [n.d.]. Early perfor-
mance results from the prototype Morello microarchitecture. Technical
Report UCAM-CL-TR-986. University of Cambridge, Computer Labo-
ratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom,
phone +44 1223 763500.

Robert N. M. Watson, Ben Laurie, and Alex Richardson. 2021.
Assessing the Viability of an Open-Source CHERI Desktop Soft-
ware. https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_
e0f23245dace466297f20a0dbd22d371.pdf

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou,

10

Duncan Lowther, Dejice Jacob, and Jeremy Singer

Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Mur-
doch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson, Peter
Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. 2020. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architec-
ture (Version 8). Technical Report UCAM-CL-TR-951. University of
Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-951

[16] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,

Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka,
Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe, Peter G.
Neumann, Robert N. M. Watson, and Simon W. Moore. 2019. CHERI
Concentrate: Practical Compressed Capabilities. IEEE Trans. Com-
put. 68, 10 (April 2019), 1455-1469. https://doi.org/10.1109/TC.2019.
2914037

[17] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.

Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture. 457-468.
https://doi.org/10.1145/2678373.2665740

Received 2023-07-23; accepted 2023-08-28

https://doi.org/10.48456/tr-982
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://doi.org/10.48456/tr-951
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/2678373.2665740

	Abstract
	1 Introduction
	2 Background
	2.1 CHERI and Morello
	2.2 CHERI Porting
	2.3 MicroPython

	3 Heap Block Size
	4 Stack Frame Size
	5 Compilation Inefficiency
	6 Conclusion
	Acknowledgments
	References

