
Morello MicroPython: A Python Interpreter for CHERI
Duncan Lowther
University of Glasgow

Glasgow, United Kingdom
duncan.lowther@glasgow.ac.uk

Dejice Jacob
University of Glasgow

Glasgow, United Kingdom
dejice.jacob@glasgow.ac.uk

Jeremy Singer
University of Glasgow

Glasgow, United Kingdom
jeremy.singer@glasgow.ac.uk

Abstract
Arm Morello is a prototype system that supports CHERI
hardware capabilities for improving runtime security. As
Morello becomes more widely available, there is a grow-
ing effort to port open source code projects to this novel
platform. Although high-level applications generally need
minimal code refactoring for CHERI compatibility, low-level
systems code bases require significant modification to com-
ply with the stringent memory safety constraints that are
dynamically enforced by Morello. In this paper, we describe
our work on porting the MicroPython interpreter to Morello
with the CheriBSD OS. Our key contribution is to present a
set of generic lessons for adapting managed runtime execu-
tion environments to CHERI, including (1) a characterization
of necessary source code changes, (2) an evaluation of run-
time performance of the interpreter on Morello, and (3) a
demonstration of pragmatic memory safety bug detection.
Although MicroPython is a lightweight interpreter, mostly
written in C, we believe that the changes we have imple-
mented and the lessons we have learned are more widely
applicable. To the best of our knowledge, this is the first
published description of meaningful experience for scripting
language runtime engineering with CHERI and Morello.

CCS Concepts: • Software and its engineering → In-
terpreters; • Security and privacy→ Virtualization and
security.

Keywords: CHERI, capabilities, software implementation
ACM Reference Format:
Duncan Lowther, Dejice Jacob, and Jeremy Singer. 2023. Morello
MicroPython: A Python Interpreter for CHERI. In Proceedings of
the 20th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes (MPLR ’23), October 22, 2023,
Cascais, Portugal. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3617651.3622991

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MPLR ’23, October 22, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0380-5/23/10. . . $15.00
https://doi.org/10.1145/3617651.3622991

1 Introduction
In 2021, Arm released a prototype platform code-named
‘Morello’ [2, 9] which realizes the CHERI hardware capabil-
ity concept [22, 25] in an industrial strength microprocessor.
A capability is a double-width ‘fat’ pointer that includes
metadata for address bounds and access permissions. Ad-
ditionally, CHERI capabilities have an out-of-band tag to
ensure pointer validity. The premise of hardware capabili-
ties is that entire classes of memory vulnerabilities can be
eliminated, including spatial bugs (i.e. out-of-bounds reads
and writes) and temporal bugs (i.e. use-after-free bugs) [12].
In this paper, we describe our experience and lessons

learned during a full port of the MicroPython framework to
Morello. We modify the C source code of MicroPython in
order to provide runtime awareness of CHERI capabilities.
There were two logical stages to this work: firstly the Mi-
croPython code was refactored to eliminate compiler errors
and warnings, as described in Section 3; secondly memory
safety enforcement of capabilities was leveraged to generate
tight bounds on runtime allocations, as described in Section
4. In Section 5, we analyse test coverage for MicroPython on
the Morello CheriBSD platform, which has almost identical
results to the AArch64 FreeBSD platform. Section 6 charac-
terizes the source code modifications required, showing that
the code base alterations are small (0.18% of overall code-
base). We note this is comparable with work reported from
various other CHERI ports.

Porting MicroPython to Morello had the additional bene-
fit of uncovering a number of latent memory safety bugs in
the interpreter’s code base. They were exposed by bounds
checking of capabilities during execution of unit tests and
benchmarks. The patches applied to fix these bugs have been
merged into the upstream MicroPython repository and are
discussed in Section 7. In this way, we demonstrate con-
cretely that a CHERI port of an interpreter can also provide
memory safety improvements for non-CHERI users.
Further, we provide a performance analysis of MicroPy-

thon running on Morello in Section 8. Taking into account
that (1) Morello is a prototype platform [19, 20] and (2) Mi-
croPython is not a high-performance runtime, we measure
the overheads of capability support for MicroPython running
a standard set of Python benchmarks. Our results show there
is a geometric mean 73% slowdown in terms of execution
time.
This work describes a complete first phase of enhancing

security and resilience of MicroPython on Morello. CHERI

62

https://orcid.org/0009-0004-9310-8092
https://orcid.org/0000-0002-4137-0353
https://orcid.org/0000-0001-9462-6802
https://doi.org/10.1145/3617651.3622991
https://doi.org/10.1145/3617651.3622991
https://doi.org/10.1145/3617651.3622991

MPLR ’23, October 22, 2023, Cascais, Portugal Duncan Lowther, Dejice Jacob, and Jeremy Singer

capabilities enable runtime bounds checking for memory
access in the MicroPython interpreter. Other possible ap-
plications of capabilities such as supporting software com-
partmentalization or sandboxing untrusted libraries will en-
hance the overall security properties of the interpreter. As
we consider advanced use cases for capabilities, we outline
a potential agenda for future development in Section 9.

2 Background
2.1 What is Morello?
CHERI [22, 25] specifies an abstract set of processor exten-
sions to support hardware capabilities for accessing memory.
The CHERI Concentrate compression technique [24] ensures
both pointer data and metadata can be stored in a double
machine word, i.e. 128 bits on a 64 bit architecture. A fur-
ther single bit tag denoting the validity of a capability is
stored out-of-band, referred to as the 129th bit. This hard-
ware tagging prevents capability values from being forged
by untrusted code. Dynamic checks take place in hardware
on each memory access, to ensure:

1. the capability is valid (tag check)
2. the capability has appropriate access permission (per-

mission check)
3. the capability address is within bounds for this mem-

ory access (bounds check)

If any check fails, the hardware raises a capability violation
exception. This is transmitted from kernel-space to user-
space as a SIGPROT signal and execution of code is inter-
rupted.

Morello [2, 9] is the Arm instantiation of the CHERI con-
cept. It is a quad-core AArch64 server class system-on-chip,
based on the Neoverse N1 core, enhanced to support 128-bit
architectural capability values. There are appropriate new
instructions, along with modifications to the register file
and memory hierarchy. The CPU clock speed is 2.5GHz; the
Arm instruction set architecture version is Arm v8.2-A with
Morello extensions.

The Morello platform runs CheriBSD, a capability-aware
variant of FreeBSD. Within CheriBSD, user code may run
in hybrid or purecap mode. Hybrid mode involves executing
standard AArch64 code, with support for executing capabili-
ties. Only pointers explicitly annotated in source code are
treated as capabilities. Effectively, this code runs in a process-
level sandbox, with all raw pointers being converted to ca-
pabilities with the widest possible permissions and bounds
by setting the global base capabilities in the Morello register
set (e.g. the default data capability, DDC). The purecap mode
involves executing Morello code with capability support. All
references within purecap applications are represented as
capabilities directly. This is the preferred execution mode
for CheriBSD applications, since it provides finer-grained
capability support.

While Morello is a server-class processor, there is ongoing
work to create smaller, embedded variants of the CHERI
concept, e.g. [1, 26].
The typical language for developing CHERI applications

currently is C [23]. CHERI C is a variant of C, with built-
in intrinsics to handle capabilities and additional semantic
constraints around pointer accesses.

2.2 What is MicroPython?
MicroPython [5] is a lightweight interpretive Python run-
time, typically for targeting microcontroller scale devices.
Although such systems usually run applications that are com-
piled from low-level languages like C, MicroPython provides
a feasible alternative paradigm for development and deploy-
ment. Scripting languages enable rapid prototyping; also,
Python is highly accessible for educational usage [8, 17].

MicroPython supports almost all of the Python 3 language,
with a fewminor omissions [6]. Textual source code is parsed
and compiled to a compact bytecode format. This bytecode
is interpreted at runtime by the interpreter. MicroPython
does not feature a JIT compiler.

Typical interpreter optimisations implemented byMicroPy-
thon include interned strings, small integers embedded di-
rectlywithin tagged pointers, optimisedmethod calls, Python
stack frames hosted on the C stack, garbage collection with-
out reference counting, and exceptions using custom non-
local returns implemented with inline assembly.
MicroPython is written in C; the project is 307 kSLOC.

Ports are available for common microcontroller families in-
cluding Arm CortexM and ESP32. In addition, there is a
POSIX process-level port which means MicroPython can be
compiled and run as a hosted Unix executable. With respect
to Arm instruction sets, MicroPython currently has support
for AArch64, as well as Arm32 and Thumb.

2.3 Related Work
This section briefly surveys related projects that also inves-
tigate the development of managed runtimes on capability
platforms.
JavaScriptCore (JSC) is a mature and highly performant

JavaScript engine used in popular applications such as the
Safari browser. The JSC runtime has been partially ported
to CHERI [10], including the interpreter and a baseline tier
of the JIT compiler. It represents the fullest exploration to
date of a managed runtime on Morello. All changes to JSC
are grouped into one of the following categories:

1. support for JavaScript execution.
2. support for VM-specific value representation.
3. C++ pointer use.

This port adds hardware supported bounds checking to VM
allocations for spatial safety in heap memory. However the
analysis does not include any performance measurements.

63

Morello MicroPython: A Python Interpreter for CHERI MPLR ’23, October 22, 2023, Cascais, Portugal

Like our MicroPython port, the JSC work is restricted to a
single logical compartment model of execution.

Morello-specific CHERI ports of the OpenJDK virtual ma-
chine [16] and the WasmMicro Runtime [18] are in progress.
For both projects, there are no published results so far.
The CPython interpreter compiles for CHERI, but we

find it is missing key functionality when we try to use it
in purecap mode. We are able to run a ‘hello world’ script
but nothing more complex. However, CPython runs with
full functionality in hybrid (i.e. legacy AArch64) mode. We
rely on this hybrid executable for building the MicroPython
interpreter using the Morello platform as build host.
The Boehm-Demers-Weiser standalone garbage collec-

tor has been ported to CHERI [11]. Like MicroPython, it
implements a single generation, non-moving, mark/sweep
algorithm. The use of Morello ‘tags’ to identify valid pointers
transforms this conservative collector into a precise collector.
Preliminary performance results with this framework are
based on emulated execution.

A range of C runtime memory allocators have been ported
to Morello, with accompanying analysis including a per-
formance characterization [3]. They contrast hybrid and
purecap execution, noting significant overheads for purecap
execution in some circumstances.

3 Initial Porting Process
The initial port simply involved getting the MicroPython
code to compile and run on Morello.

Of the various MicroPython configurations (also known as
ports) the minimal configuration was initially modified for
CheriBSD onMorello. The minimal configuration is a simple
reference implementation of the interactive interpreter with
no Python library support. Using the minimal build as a
foundation, the unix build configuration with support for
more features was ported.
The build process involved compiling MicroPython na-

tively on a CHERIBSD/Morello system using the natively
hosted LLVM Morello toolchain1. Both hybrid and purecap
MicroPython interpreters were generated using build-tools
that were hybrid binaries. This reduced the porting effort for
MicroPython in purecap as the build process for MicroPy-
thon is dependent on CPython and the purecap variant of
CPython is not yet mature (see Section 2.3).

3.1 Minimal Configuration (Hybrid)
The minimal build required two modifications to properly
compile for the hybrid ABI, neither of which were specific
to Morello.

1. The AArch64 non-local return (NLR) sequences re-
quired a small change due to compiler register alloca-
tion issues in the AArch64 code. A fix for this issue

1clang version 13.0.0 aarch64-unknown-freebsd14.0

was submitted upstream2 and the issue was later fixed
and merged in slightly different manner3.

2. The configuration header file needed to be modified
for a BSD build. (By default, MicroPython minimal is
set up to run on Linux.)

3.2 Minimal Configuration (Purecap)
3.2.1 Non-Local Returns. MicroPython uses non-local
returns (similar to longjmp(3)) to implement Python ex-
ception handling semantics. Its implementation uses inline
assembly to save a number of (64-bit) registers to a buffer, and
restores themwhen needed. Substitution of 64-bit X-registers
for the corresponding 128-bit C-registers and doubling the
memory offsets was sufficient to create the purecap version.
(Since the part of the buffer holding registers is declared in
the C code as an array of pointers, the compiler allocates
a sufficiently large buffer for this without further changes
being necessary.)

3.2.2 Capability Provenance Considerations. CHERI
requires every valid capability to be derived from exactly one
other capability, so arithmetic operations on two provenance-
carrying variables are ambiguous and generate compiler er-
rors [23]. The compiler initially flagged several places where
two variables of provenance-carrying types ((u)intptr_t)
were combined in an arithmetic expression. All of these re-
sulted from the fact that MicroPython uses mp_int_t and
mp_uint_t as its standard integral types, and these are type-
def’d as intptr_t and uintptr_t respectively. The vast
majority of places that mp_(u)int_t are used do not involve
pointers and should not carry provenance, so we redefined
those types as 64-bit integral types.
In a few places, however, mp_uint_t was used to hold

values that may be pointers, most notably the mp_obj_t
type, which can either represent a pointer to an object struct
or a small integer. We changed these sites to use uintptr_t
instead to preserve provenance. There were also several
places where a pointer was cast through the mp_uint_t type
to another type: in these cases, the provenance-discarding
cast was removed.

Both hybrid and purecap builds of the minimal configura-
tion were successfully tested with simple interactive Python
scripts. However, the full test suite included with MicroPy-
thon requires the ability to run a Python file specified as a
command-line argument, which minimal does not support.
For this reason, we shifted to a configuration with more
advanced features.

3.3 Unix Configuration (Purecap)
In order to use the MicroPython test suite, we ported the
unix configuration to Morello. This configuration adds fea-
tures that are disabled in minimal, including support for
2https://github.com/micropython/micropython/pull/11716
3https://github.com/micropython/micropython/pull/11762

64

https://github.com/micropython/micropython/pull/11716
https://github.com/micropython/micropython/pull/11762

MPLR ’23, October 22, 2023, Cascais, Portugal Duncan Lowther, Dejice Jacob, and Jeremy Singer

Table 1. MicroPython code changes required by category
and symptom. (M) denotes symptoms discovered on the
minimal build, while (U) denotes symptoms discovered on
the unix build.

Symptom Asm UP PL Bnds PS
Compiler error (M) - 2 2 - -

SIGPROT (M) 2 - - - 1
Compiler error (U) - - 1 - -

SIGPROT (U) - - 11 2 -
Incorrect results - - - - 1

Total 2 2 14 2 2

reading and writing files. However, we disabled the FFI and
SSLmodules in the first instance to avoid issues with their de-
pendencies; for instance, the FFI module depends on libffi.
The purecap Morello port of libffi does not currently sup-
port closures, which MicroPython’s FFI module requires in
order to wrap Python functions as callbacks to be passed to
native functions.

3.4 Required Modifications
Running the test suite uncovered several problems. Impor-
tantly, with one exception (an incorrect pointer-shape as-
sumption in the mp_classify_fp_as_int() function that
caused five floating-point tests to return incorrect results
without a crash), all problems caused the relevant tests to
crash with a SIGPROT signal, making them relatively easy
to identify and debug.

Table 1 breaks down the changes required by category and
symptom, counting each distinct source code location where
a change was required. We explain the categories of changes,
andmap these onto the existing CheriABI classification (refer
to Table 2 in [4]).

• Assembly (Asm) changes were those required to adapt
existing inline assembly to use the capability registers,
mostly corresponding to the calling convention (CC)
patch of the CheriABI classification.

• Unnecessary Provenance (UP) refers to integer variables
(not intended to store pointers) that are defined to
have unnecessary provenance-carrying types, which
cause compiler errors due to ambiguity in arithmetic
expressions and takes up more space unnecessarily.

• Provenance Loss (PL) refers to casts through integer
types which clear the tag on a capability that must
be later used. Both of these categories belong to the
integer provenance (IP) style of patch in the CheriABI
classification.

• Bounds (Bnds) refers to attempts to use a capability
to access an address outside its bounds, which breaks
monotonicity (M) in the CheriABI scheme. Monotonic-
ity refers to the CHERI principle that the only way

to create a valid fresh capability is by restricting the
bounds or permissions of an existing capability; it is
thus not possible to widen capability bounds.

• Pointer shape (PS), as in the CheriABI classification,
refers to places where the existing code expects the
size of a pointer to match that of another integer type.

4 Capability Bounds on Heap Allocations
So far, the changeswe havemade have been the least required
to build and run MicroPython on Morello under the purecap
CHERI ABI. The compiler automatically sets suitable bounds
on pointers to local variables and other stack allocations, and
the runtime linker similarly sets suitable bounds on pointers
to global variables [23]. The C library also sets bounds on
heap pointers allocated with malloc() and mmap(); how-
ever, MicroPython uses its own internal memory allocator
and garbage collector (simple mark/sweep) for dynamic heap
allocations. As this allocator is not CHERI-aware, the point-
ers it returns will have the same bounds as those from which
they are derived, which cover an entire heap area.
The logical next step, then, was to set tight bounds on

these heap allocations. To do this, we modified the internal
interpreter gc_alloc() and gc_realloc() functions to use
CHERI intrinsics to set tight bounds on all returned capa-
bilities. Note that the gc_realloc() function also had to be
modified to widen the bounds of the input capability, using
the base heap area capability as the provenance source, when
the allocation is expanded in place.

These changes caused bounds faults to be raised in some
of the test cases. The underlying issues here fall into two
categories: buffer overflows and issues with bounds on in-
place reallocated pointers. The first category is covered in
Section 7. The second category involves two areas: parsing
and string interning. (In MicroPython an interned string is
referred to as a uniQue STRing or QSTR.)
Parsing and string interning perform their own memory

management, requesting block allocations from the garbage
collector and breaking them down as needed. When one of
these modules runs out of memory in its current block, it
asks the garbage collector to reallocate the block in-place (i.e.,
to extend the allocation). Because it has restricted its call to
an in-place reallocation only, the code here assumes that the
return value of m_realloc_maybe() can (after checking it
for NULL to determine success or failure) be safely discarded.
However, with CHERI bounds on these allocations, the return
value must be saved back into the block pointer in order to
ensure the bounds are properly updated.
There are various vulnerabilities which are mitigated by

this enforcement of tight capability bounds. For instance, the
uctypes MicroPython module exposes several functions to
manipulate native pointers in interpreted Python code. These
pointers can be easily abused on a non-CHERI system to gain
read/write access to a large portion of the heap. A simplified

65

Morello MicroPython: A Python Interpreter for CHERI MPLR ’23, October 22, 2023, Cascais, Portugal

1 import uctypes as uct
2 tiny = bytearray (1)
3 ptr = uct.addressof(tiny)
4 unsafe = uct.bytearray_at(ptr , 16384)
5 unsafe [200] = 0x1f

Listing 1. A simple buffer overflow attack. MicroPython’s
uctypes arrays exposes a pointer to raw memory. In purecap
mode access outside the bounds will trap with a SIGPROT.

example is given in Figure 1. Note that as Python functions
are objects stored on the heap, this allows manipulation of
code as well as data.
In our purecap build, this vulnerability does not exist, as

the bounds of the initial allocation stay with the pointer and
later arbitrary expansion without explicit re-allocation is
prohibited, causing a SIGPROT error.

5 Full Coverage Tests
To round off our port, we reintegrated the FFI and SSL mod-
ules (disabling FFI callbacks to avoid the particular issue with
closures). We also compiled for the coverage variant of the
unix port, which includes a few more features for maximum
test coverage, ran the hybrid and purecap builds through the
MicroPython test suite, and compared the results with three
reference builds of the same variant compiled and run on
non-Morello targets. The test results are shown in Table 2.

Table 2. MicroPython test suite results (commit
de98805c9504703f153f0a56a7af8ee78a84eea2, unix port,
coverage variant)

OS/Architecture Pass Fail Skip
Ubuntu 20.04/x86-64 920 0 8
Ubuntu 20.04/AArch64 874 1 53
FreeBSD 13.2/AArch64 875 0 53
CheriBSD 22.12/Morello (hybrid) 875 0 53
CheriBSD 22.12/Morello (purecap) 874 1 53

The single failed test in the purecap build is due to lack
of support for FFI callbacks, and apart from this, our builds
passed all of the tests that those for other AArch64 targets
passed. There were 8 tests which all targets skipped and
45 tests which are skipped on the AArch64 targets but not
on x86-64, the latter relating to the option to compile to
native machine code rather than MPY bytecode, which does
not yet have an AArch64 backend, and to the related Viper
extensions for native types.

6 Total Modifications
In total we modified 533 lines of code (510 additions and 23
deletions) in the original MicroPython project. Of these, 5
additions and 5 deletions were upstreamed fixes, and the rest

were Morello specific. This comes to just under 0.18% of the
existing codebase, roughly seven times the 0.026% reported
for the KDE port [21]. This might be expected, given we are
dealing with more low-level systems code.
However, over half of our additions can be attributed to

two source files that were added wholesale, accounting for
252 lines of code between them. The nlrmorello.c file (87
new lines) specifies the inline assembly for non-local returns,
which is identical to that in the previous nlraarch64.c file
except for its use of 128-bit C-registers in place of 64-bit
X-registers. The objcap.c file (165 new lines) creates a new
built-in Python type to wrap pointers when dealing with
native structures. If these are discounted as anomalous, the
258 remaining modifications represent only 0.086% of the
existing codebase.
By way of comparison, Bramley et al. [3] report num-

bers between 0.4% (jemalloc) and 6.7% (dlmalloc) for CHERI-
induced codebase changes to real-world memory allocator
libraries. These are libraries only, not full managed runtimes.
Similarly, Gutstein [10] reports a figure of 0.34% for the pro-
portion of lines of code modified in the Morello low-level
interpreter for JavaScriptCore. We assess our headline figure
of 0.18% as reasonably in line with similar CHERI porting
efforts.

7 Upstream Fixes
One compelling use case for Morello is to detect latent mem-
ory bugs in legacy systems code. For instance, the origi-
nal CHERI developers were able to uncover multiple buffer
bounds violations as they ported FreeBSD to CHERI [4]. The
dynamic checks enforced by hardware capabilities are very
helpful for identifying spatial safety issues in C code. While
other dynamic debugging tools like Valgrind [14] and ASan
[15] can be used to find memory errors, their high overhead
means they are often not included in continuous integration
pipelines.

During our port of MicroPython to Morello, we discovered
four such problems in the existing MicroPython repository.
Two of these were test cases which failed to allocate large
enough buffers for the operations they were performing
because they did not take structure padding into account.
The third issue was a library function that involved string
handling which attempted to read one character beyond the
null terminator. The final issue was another library func-
tion, where incorrect integer division led to a buffer length
calculation error: in a base64 decoding function, the output
buffer needed to be no less than three-quarters the size of
the input, but the calculation used was (input_len / 4) *
3 + 1, where the truncation from the division occurs before
the multiplication and results in the buffer being as many as
2 bytes too short (an input length of 7 results in an output
buffer length of 4, where the actual required length would

66

https://github.com/glasgowPLI/micropython/tree/table2-tests

MPLR ’23, October 22, 2023, Cascais, Portugal Duncan Lowther, Dejice Jacob, and Jeremy Singer

be 6). All of these latent bugs were simple to fix once dis-
covered, and we submitted a pull request with the relevant
patches which was accepted and merged into the upstream
repository on 21 June 2023.4

8 Performance Evaluation
To evaluate our MicroPython interpreter, we use the set of
Python benchmarks from the performance section of the Mi-
croPython test suite. These are mostly small-scale, compute-
intensive, real-world applications.
For all quantitative measurements, we run MicroPython

on Morello with CheriBSD version 22.12, taking arithmetic
means of 30 runs. When we take measurements of execution
in MicroPython, we pre-compile each benchmark to byte-
code format so we are only reporting performance data for
bytecode execution, not including the overhead of source
code compilation time.

8.1 Performance Results
Wewant to compare hybrid and purecap execution onMorello
with CheriBSD. In hybrid mode, we are effectively running
the upstreamAArch64MicroPython interpreter in a capability-
oblivious way. In purecap mode, we are running MicroPy-
thon with all our capability-based extensions as reported
above—taking advantage of the capability support provided
by Morello.
It is only fair to note that the Morello system is experi-

mental hardware [19]. We are reporting performance figures
to give an indication of worst-case overheads for runtime
capability support. We are aware of some performance is-
sues with the prototype Morello system, which are subject
to ongoing investigation at Arm with the CHERI team. We
believe our performance overheads could be reduced with
more sophisticated Morello benchmarking techniques [20].
Figure 1 shows the runtime behaviour of Python bench-

marks on the purecap interpreter, with counts normalized
against the baseline hybrid interpreter. For each benchmark,
we report six metrics. The leftmost (blue) bar is the wall-
clock execution time. In general, the purecap execution time
is between 1.5x and 2x hybrid, i.e. an overhead of between
50–100%.
The other four bars represent CPU performance counter

data for purecap execution, normalized against the same
counters in hybrid execution mode. The instructions retired
generally tracks total time. The cache misses at various lev-
els in the memory hierarchy are increased for purecap, but
generally not excessively.

Figure 2 records the dynamic instruction counts for each
Python benchmark we executed on the MicroPython inter-
preter. This data is collected using QEMU-based emulation of
Morello running MicroPython on CheriBSD. Again, we exe-
cuted each benchmark in both hybrid and purecap execution

4https://github.com/micropython/micropython/pull/11786

modes. We divide the instruction set into two distinct classes:
one is conventional AArch64 instructions, the other is new
Morello instructions for handling architectural capabilities.
We notice that, for most benchmarks, there are many addi-
tional Morello-based instructions in purecap mode. There
are a few Morello instructions in hybrid mode but these are
only caused by CheriBSD system and library calls.

8.2 Performance Fixes
For certain benchmarks, like fannkuch and nqueens, we
initially saw a 100x execution time overhead. Further investi-
gation showed that the overhead was almost entirely caused
by an inefficiency in the heap allocator, created by the dou-
bling in pointer size and triggered by the use of repetitive
list-slicing operations (each list-slicing operation requires at
least three heap allocations: one for the slice specifier object,
one for the new list object, and one for the new list con-
tents; and the slice object is then almost immediately freed
resulting in fragmentation). We adjusted two compile-time
constant values: (1) allocator minimum block size to account
for the increased pointer size, and (2) stack frame heap-spill
threshold (which was responsible for a 3.7x overhead in
pystone), along with minor VM optimisations reduced the
geometric-mean execution time overhead to 73%. These op-
timisations are detailed at length elsewhere [13]. The results
shown in Figure 1 were measured after these performance
tuning changes.

9 Future Work
At present, we have a fully functional MicroPython inter-
preter on Morello, running as a process virtual machine in
CheriBSD, with spatial memory safety enforced by capa-
bilities in the interpretive runtime. The key MicroPython
module that is not yet fully CHERI-compatible is the FFI
module. This is only partially implemented because foreign
function interface (FFI) callbacks are not yet supported by
the CHERI C library port of libffi. This section explores pos-
sible future developments that might enhance our port and
leverage the CHERI capabilities in new ways.

First, we plan to leverage CHERI hardware bounds check-
ing to eliminate some of the software bounds checking per-
formed by MicroPython in the interpreter. This should re-
duce runtime overhead significantly.
One of the most promising features of Morello is its sup-

port for lightweight software compartmentalization, although
there is no clear consensus on the best way to implement
compartments in Morello. Capabilities enable us to divide an
executing program into mutually distrusting compartments
with managed interfaces between them. We will explore the
Morello compartmentalization primitives and determine how
best to split up the MicroPython runtime. We aim to com-
partmentalize libraries and driver code, since these are often
supplied by third parties and may be untrusted [7]. Another

67

https://github.com/micropython/micropython/pull/11786

Morello MicroPython: A Python Interpreter for CHERI MPLR ’23, October 22, 2023, Cascais, Portugal

aes-256 chaos fannkuch fft float hexiom mandelbrot nqueens pidigits pystone raytrace
0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ise

d
(v

s h
yb

rid
) p

ur
ec

ap
 m

icr
op

yt
ho

n
m

et
ric

s

normalised Total Time
normalised Instructions retired
normalised L1-I-cache

normalised L1-D-cache
normalised L2-D-cache

Figure 1. Performance of Python benchmarks running on the purecap interpreter, normalised to the hybrid interpreter
performance. For example, the wall-clock execution time total-time of aes-256 on purecap is 2x greater than on hybrid. We
recorded several performance metrics: Instructions retired is the number of instructions retired while executing the benchmark;
and {L1-I, L1-D, L2-D}-cache the L1 instruction, L1 data, and L2 data, cache misses respectively. For clarity, the horizontal
dashed line shows the point of zero overhead (normalised value 1.0).

ae
s2

56
ch

ao
s

fa
nn

ku
ch fft

flo
at

he
xi

om
m

an
de

lb
ro

t
nq

ue
en

s
pi

di
gi

ts
py

st
on

e
ra

yt
ra

ce

0

20

40

60

80

100

120

140

160

%
 in

st
ru

ct
io

ns
 re

la
tiv

e
to

 h
yb

rid
 to

ta
l

morello regs
morello misc
morello ld/st
morello arith
ld/st
branches
scalar fp
data proc

Figure 2. Dynamic instruction counts for execution of
Python benchmarks. For each benchmark, there are two
runs: purecap (left bar) and hybrid (right bar). For each run,
we distinguish Morello instructions (dotted rectangles at top
of stacked bars) from normal AArch64 instructions (plain
rectangles at bottom of stacked bars).

interesting line of work would be to exploit the compartmen-
talization mechanism for the foreign function interface (FFI).
We will further explore whether it makes sense for compart-
mentalization to be exposed to hosted Python applications
running on MicroPython—can Python software be split into
compartments using simple Python decorators?
Finally, we intend to explore the potential for running

MicroPython in baremetal mode on Morello, rather than as a
process hosted by CheriBSD. Although this is not a feasible
use case for server grade Morello platforms, we are aware

that researchers are developing microcontroller devices with
CHERI support [1]. Baremetal MicroPython is a standard
deployment scenario for microcontrollers.

10 Conclusions
In this paper, we have described our experiences during the
port of the MicroPython framework to the new capability-
aware Morello platform.We have indicated the challenges in-
volved in adapting managed runtime environments for plat-
forms that support richer pointer structures, such as CHERI-
style architectural capabilities. The performance evaluation
shows that there is an overhead associated with CHERI, al-
though we are cautiously optimistic that this overhead will
be reduced as industry support improves for tagged point-
ers and associated processor security mechanisms. We have
sketched out a roadmap of future work for leveraging capa-
bilities to add new features to MicroPython, including the
notion of library sandboxing with software compartmental-
ization.

Although this work has focused on a small-scale MicroPy-
thon runtime and the experimental Morello platform, we
hope that the lessons we have reported are useful to a wider
audience with interests in language runtimes and secure
processor technologies.

Acknowledgments
This work was funded by the Digital Security by Design
(DSbD) programme delivered by UKRI (including grants
EP/V000349/1 and EP/X015831/1), also by the UK Defence
and Security Accelerator contract ACC6037520.

68

MPLR ’23, October 22, 2023, Cascais, Portugal Duncan Lowther, Dejice Jacob, and Jeremy Singer

References
[1] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel

Filardo, Kunyan Liu, Robert Norton-Wright, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Rethinking secu-
rity for low-cost embedded systems. Technical Report MSR-TR-2023-6.
Microsoft. https://www.microsoft.com/en-us/research/publication/
cheriot-rethinking-security-for-low-cost-embedded-systems/

[2] Arm. 2021. ArmArchitecture ReferenceManual Supplement —Morello
for A-profile Architecture. https://developer.arm.com/documentation/
ddi0606/.

[3] Jacob Bramley, Dejice Jacob, Andrei Lascu, Jeremy Singer, and Lau-
rence Tratt. 2023. Picking a CHERI Allocator: Security and Perfor-
mance Considerations. In Proceedings of the 2023 ACM SIGPLAN In-
ternational Symposium on Memory Management. 111–123. https:
//doi.org/10.1145/3591195.3595278

[4] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo
Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. Cheri-
ABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-Time Environment. In Proceedings
of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 379–393.
https://doi.org/10.1145/3297858.3304042

[5] Damien P. George. 2013. MicroPython. https://micropython.org.
[6] Damien P. George, Paul Sokolovsky, et al. 2023. MicroPython differ-

ences from CPython. https://docs.micropython.org/en/latest/genrst/.
[7] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and

Edouard Bugnion. 2021. Enclosure: Language-Based Restriction of
Untrusted Libraries. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems. 255–267. https://doi.org/10.1145/3445814.3446728

[8] Linda Grandell, Mia Peltomäki, Ralph-Johan Back, and Tapio Salakoski.
2006. Why Complicate Things? Introducing Programming in High
School Using Python. In Proceedings of the 8th Australasian Confer-
ence on Computing Education. 71–80. https://doi.org/10.5555/1151869.
1151880

[9] Richard Grisenthwaite, Graeme Barnes, Robert N.M.Watson, SimonW.
Moore, Peter Sewell, and Jonathan Woodruff. 2023. The Arm Morello
Evaluation Platform—Validating CHERI-Based Security in a High-
Performance System. IEEE Micro 43, 3 (2023), 50–57. https://doi.org/
10.1109/MM.2023.3264676

[10] Brett Gutstein. 2022. Memory safety with CHERI capabilities: security
analysis, language interpreters, and heap temporal safety. Technical
Report UCAM-CL-TR-975. University of Cambridge, Computer Labo-
ratory. https://doi.org/10.48456/tr-975

[11] Dejice Jacob and Jeremy Singer. 2022. Capability Boehm: Chal-
lenges and Opportunities for Garbage Collection with Capability
Hardware. In Proceedings of the 18th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments. 81–87. https:
//doi.org/10.1145/3516807.3516823

[12] Nicolas Joly, Saif ElSherei, and Saar Amar. 2020. Security Analysis
of CHERI ISA. https://msrc.microsoft.com/blog/2020/10/security-
analysis-of-cheri-isa/.

[13] Duncan Lowther, Dejice Jacob, and Jeremy Singer. 2023. CHERI Per-
formance Enhancement for a Bytecode Interpreter. In Proceedings of
the 15th ACM SIGPLAN International Workshop on Virtual Machines
and Intermediate Languages. https://doi.org/10.1145/3623507.3623552
arXiv:2308.05076 [cs.PL]

[14] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proceedings of

the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation. 89–100. https://doi.org/10.1145/1250734.1250746

[15] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Annual Technical Conference. 28.

[16] Soteria Project. 2023. Researching solutions for a safer web. https:
//soteriaresearch.org.

[17] Frank Stajano. 2000. Python in education: Raising a generation of na-
tive speakers. In Proceedings of the 8th International Python Conference.
24–27.

[18] UKRI. 2022. CHERI WebAssembly Micro Runtime. https://gtr.ukri.
org/projects?ref=10028870.

[19] Robert N. M. Watson, Graeme Barnes, Jessica Clarke, Richard Grisen-
thwaite, Peter Sewell, Simon W. Moore, and Jonathan Woodruff. 2023.
Arm Morello Programme: Architectural security goals and known limita-
tions. Technical Report UCAM-CL-TR-982. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-982

[20] Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes, Richard Grisenthwaite, Kathryn
Stacer, Silviu Baranga, and Alexander Richardson. [n. d.]. Early perfor-
mance results from the prototype Morello microarchitecture. Technical
Report UCAM-CL-TR-986. University of Cambridge, Computer Labo-
ratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom,
phone +44 1223 763500.

[21] Robert N. M. Watson, Ben Laurie, and Alex Richardson. 2021.
Assessing the Viability of an Open-Source CHERI Desktop Soft-
ware. https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_
e0f23245dace466297f20a0dbd22d371.pdf

[22] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou,
Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Mur-
doch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson, Peter
Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. 2020. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architec-
ture (Version 8). Technical Report UCAM-CL-TR-951. University of
Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-951

[23] Robert N. M. Watson, Alexander Richardson, Brooks Davis, John
Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W.
Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann. 2020.
CHERI C/C++ Programming Guide. Technical Report UCAM-CL-
TR-947. University of Cambridge, Computer Laboratory. https:
//doi.org/10.48456/tr-947

[24] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,
Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka,
Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe, Peter G.
Neumann, Robert N. M. Watson, and Simon W. Moore. 2019. CHERI
Concentrate: Practical Compressed Capabilities. IEEE Trans. Com-
put. 68, 10 (April 2019), 1455–1469. https://doi.org/10.1109/TC.2019.
2914037

[25] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture. 457–468.
https://doi.org/10.1145/2678373.2665740

[26] Hongyan Xia. 2021. Capability memory protection for embedded sys-
tems. Technical Report UCAM-CL-TR-955. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-955

Received 2023-06-29; accepted 2023-07-31

69

https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://developer.arm.com/documentation/ddi0606/
https://developer.arm.com/documentation/ddi0606/
https://doi.org/10.1145/3591195.3595278
https://doi.org/10.1145/3591195.3595278
https://doi.org/10.1145/3297858.3304042
https://micropython.org
https://docs.micropython.org/en/latest/genrst/
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.5555/1151869.1151880
https://doi.org/10.5555/1151869.1151880
https://doi.org/10.1109/MM.2023.3264676
https://doi.org/10.1109/MM.2023.3264676
https://doi.org/10.48456/tr-975
https://doi.org/10.1145/3516807.3516823
https://doi.org/10.1145/3516807.3516823
https://msrc.microsoft.com/blog/2020/10/security-analysis-of-cheri-isa/
https://msrc.microsoft.com/blog/2020/10/security-analysis-of-cheri-isa/
https://doi.org/10.1145/3623507.3623552
https://arxiv.org/abs/2308.05076
https://doi.org/10.1145/1250734.1250746
https://soteriaresearch.org
https://soteriaresearch.org
https://gtr.ukri.org/projects?ref=10028870
https://gtr.ukri.org/projects?ref=10028870
https://doi.org/10.48456/tr-982
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://doi.org/10.48456/tr-951
https://doi.org/10.48456/tr-947
https://doi.org/10.48456/tr-947
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.48456/tr-955

	Abstract
	1 Introduction
	2 Background
	2.1 What is Morello?
	2.2 What is MicroPython?
	2.3 Related Work

	3 Initial Porting Process
	3.1 Minimal Configuration (Hybrid)
	3.2 Minimal Configuration (Purecap)
	3.3 Unix Configuration (Purecap)
	3.4 Required Modifications

	4 Capability Bounds on Heap Allocations
	5 Full Coverage Tests
	6 Total Modifications
	7 Upstream Fixes
	8 Performance Evaluation
	8.1 Performance Results
	8.2 Performance Fixes

	9 Future Work
	10 Conclusions
	Acknowledgments
	References

